Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts
This season on our NASA Explorers video series, we’ve been following Elaine Horn-Ranney Ph.D and Parastoo Khoshaklagh Ph.D. as they send their research to the space station.
Want to keep up with space station research? Follow ISS Research on Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
With this new name, our Mars 2020 rover has now come to life! Chosen by middle school student Alex Mather, Perseverance helps to remind ourselves that no matter what obstacles we face, whether it's on the way to reaching our goals or on the way to Mars, we will push through. In Alex’s own words,
“We are a species of explorers, and we will meet many setbacks on the way to Mars. However, we can persevere. We, not as a nation but as humans, will not give up. The human race will always persevere into the future.”
Welcome to the family. ❤️
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This International Women’s Day join us in celebrating the women whose grit, ingenuity and talent drives us forward in our mission to boldly expand frontiers in air and space. Thank you for pushing boundaries, serving as role models and shaping space, science and discovery every day!
The women at NASA are making history everyday! Keep up with their work and learn more about their stories, HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Dr. Erika Podest is a scientist with the Carbon Cycle and Ecosystems Group in our Jet Propulsion Laboratory’s Earth Science Division and Visiting Associate Researcher in the Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) at UCLA. Her research entails using satellite images to study Earth’s ecosystems specifically related to wetlands and boreal forests and how they are being affected by climate change.
Erika took time from studying our home planet to answer questions about her life and career! Get to know our Earth Scientist:
I am inspired by the beauty of nature, its perfection and by the peace it brings me. My motivation is to make a positive impact on our planet by better understanding it and caring for it.
I was born and raised in Panama, which is a country with an exuberant nature. Since I can remember, I was always surrounded by nature because my father was an adventurer who loved the outdoors and always took me with him to go exploring or simply to enjoy a nice relaxing day outside. This led me to develop a deep sense of appreciation, respect, and curiosity for nature, which sparked my interest to learn about it and pursue a career in Earth Science.
Early in my college years I was training for my private pilot’s license and during my solo flights I would take pictures of features on the surface from the plane. I was always amazed at the details the pictures showed of the landscape that were not obvious from the ground. This was the first step towards discovering that there was a field for studying Earth from above, called remote sensing and consequently my Masters and Ph.D. were focused in this field.
I don’t think it is a matter of any one technology, discovery or policy. It is a combination of everything. Having an impact on climate change involves every level and direction, from the bottom up at the individual, grassroots and community level to the top down at the policy level. As individuals, I think it is important to educate ourselves about climate change (I suggest climate.nasa.gov). We all have the power to make a positive change by speaking up and making informed decisions about our consumptive habits.
Wetlands provide a vital role in carbon storage. Even though they cover about 5-8% of the Earth’s land surface, studies indicate that they contain a disproportionate amount of our planet’s total soil carbon, about 20-30%. In addition, they are like the arteries and veins of the landscape, acting as water sources and purifiers and helping in flood control. They also protect our shores and harbor large amounts of biodiversity.
Boreal forests are found in the uppermost northern hemisphere (Alaska, most of Canada, Russia, Scandinavia and northern Asia) and account for about 30% of the world’s forest cover. These forests lock up enormous amounts of carbon and help slow the increasing buildup of carbon dioxide in our atmosphere. In their peak growth phase during the northern spring and summer, the worldwide levels of carbon dioxide fall and the worldwide levels of oxygen rise.
It depends on the research trip. For example, one of my more recent ones was to the Peruvian Amazon where we went upriver on a boat for three weeks on a major tributary of the Amazon River called the Ucuyali River. I was with a team of eight researchers and we were studying the wetland ecosystems of the Pacaya-Samiria Natural Reserve, which entailed making vegetation measurements and assessing inundation extent to validate our scientific findings from satellite observations. We camped for most of the trip and a typical day entailed waking up at around 5:00 am with a symphony of sounds that emerged from the forest, including monkeys. We had breakfast and set off from base camp into the forest (~1 hour walk) to work an 8-9 hour day with a short lunch break (we had packed lunches) at noon. At the end of the day I’d be drenched in sweat, sunscreen, insect repellent, and dust and I’d bathe with water from the river, which was as brown as a milk chocolate bar. It was the most refreshing and cleansing feeling! The day would close with dinner followed with a discussion of the measurements to be collected the following day. Lights were out by 7:30 pm (which seemed like midnight) and I’d re-emerge myself into my tent in the dark tropical night surrounded by the sounds of the forest, until the next morning.
That it is important to be patient, humble and thankful.
Great question! I do not have any secrete skills or talents but I do have a couple of hobbies. I play the piano, though I am still a novice. I love windsurfing. It is an amazing feeling to skim over the water at fast speeds (I’m also an adrenaline junkie). Finally, I am fascinated by magic card tricks and whenever I have some free time I like to learn a new trick.
I enjoy constantly learning about our natural world and how it works. I also really enjoy communicating my work to students and to the general public. I find it especially rewarding when I can educate people and motivate students to consider careers in science.
Erika, thank you for your time and everything you do to keep our home planet safe!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This is what it would look like if you were training to #BeAnAstronaut! Astronaut candidates must train for two years before they become official NASA astronauts. After graduation, you can look forward to more skill building when training for upcoming missions. Let’s dive into some of the courses you can expect once you’re selected for the job:
All astronaut candidates must learn to safely operate in a T-38 jet, either as a pilot or crew. Because this is the one area of their training that is not a simulation and involves decisions with life or death consequences, it teaches them to think quickly and clearly in dynamic situations.
Geology training courses are specially tailored to the work astronauts will do from the International Space Station or on the next interplanetary mission! Astronauts learn the basic principles of geology, see rocks in their natural environment and handle samples from their class discussions. It’s less like memorizing the names of rocks and more like learning how geologists think and work.
Before they end up in space, astronauts carry out a significant portion of their training in aircraft on Earth. It's unlikely, but possible, that one of those training planes could crash in a remote area and leave the humans on board to fend for themselves for a while. Knowing how to take care of their basic needs would be invaluable. Through the exercises, instructors hope to instill self-care and self-management skills, to develop teamwork skills, and to strengthen leadership abilities – all of which are valuable for working in the isolation of the wild or the isolation of space.
Astronauts participate in a variety of extreme environment training to prepare for the stresses of spaceflight. Pictured here, they are exploring the underground system of the Sa Grutta caves in Sardinia, Italy as a part of the European Astronaut Centre’s Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) expedition. Seasoned astronauts as well as rookies participate in the course and share experiences while learning how to improve leadership, teamwork, decision-making and problem-solving skills.
In our Virtual Reality Laboratory training facility at Johnson Space Center astronauts are able to immerse themselves in virtual reality to complete mission tasks and robotic operations before launching to space. The facility provides real time graphics and motion simulators integrated with a tendon-driven robotic device to provide the kinesthetic sensation of the mass and inertia characteristics of any large object (<500lb) being handled.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This week on NASA Explorers, we’re aboard the International Space Station!
Now that our scientists’ experiment has made it to space, it’s time to see how their samples behave in microgravity.
See how astronauts conduct science in space, while a team back here on Earth conducts their own piece of the project. Watch the episode here:
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Planetary nebula NGC 6826 is located about 4,200 light years from Earth in Cygnus. When observers look directly at it through a small telescope, they typically see only the nebula’s sparkling-white central star. However, by averting one’s gaze, glancing away from the central star, the nebula’s bulbous dust clouds come into view. This optical trickery earned this planetary nebula the name the "Blinking Planetary.”
Over the next several thousand years, the nebula will gradually disperse into space, and then the central star will slowly cool as it radiates its energy for billions of years as a white dwarf.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Even star systems have identity crises. 🤷 According to data from observatories like our @nasachandraxray, a double star system has been rapidly flipping between two alter egos: a low-mass X-ray binary and a millisecond pulsar. Astronomers found this volatile double system in a dense collection of stars known as Terzan 5. The first image from @NASAHubble shows Terzan 5 in optical light. Swipe to see the new image where low, medium and high-energy X-rays detected by Chandra are colored red, green and blue respectively. Click the link in bio for more.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The day has finally arrived. After years of work, a team of scientists is at Kennedy Space Center in the hopes of seeing their research liftoff to the International Space Station.
Join #NASAExplorers for the countdown, the emotion and, hopefully, the launch!
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙 When our Voyager 2 spacecraft flew by it in this image, one pole was pointing directly at the Sun. This means that no matter how much it spins, one half is completely in the sun at all times, and the other half is in total darkness.. Far-flung, Uranus – an ice giant of our solar system – is as mysterious as it is distant. Soon after its launch in 2021, our James Webb Space Telescope will change that by unlocking secrets of its atmosphere. Image Credit: NASA/JPL-Caltech
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Have you heard the news? Astronaut applications are opening soon (March 2), and there’s never been a better time to apply then now. Here are a few signs that might mean you’re ready to take to the stars:
When you’re an astronaut, you have to work and live with your crew mates for extended periods of time. It’s important to the mission and your safety that everyone can collaborate and work together.
If the Milky Way, planets and space travel doesn’t excite you then this might not be the perfect job for you. But if you love galaxies, space station research and deep space exploration, then maybe you should take a look at our application.
Being an astronaut means that you get to take part in adventures that most people will never experience. Imagine: sitting on the launch pad in the Orion spacecraft, atop a rocket that’s getting ready to launch. You’ll travel farther into space than any other humans have been and help push the boundaries of technology in the proving ground of deep space lunar orbits, leading the way for future missions to Mars.
Not only do astronauts get to travel to space, but they also get to conduct really cool research in microgravity. Did you know that right now they’re monitoring veggie growth on the International Space Station? This research could help with our future deep space exploration and could teach us a few things about growing plants on Earth. Learn more about all the awesome research on the space station HERE.
One of the coolest things about being an astronaut, is that you get to go to SPACE! At the very least, you’ll travel to the International Space Station, which is 250 miles above Earth. Or, you could be one of the first astronauts to travel to a distant asteroid or even Mars!
Space is a place where people from all around the world come together to push the boundaries of human exploration. Whether you’re living on the space station with an international crew, or embarking on Artemis missions to the Moon – you’re sure to make new friendships wherever you go.
Meal time is family time aboard the space station, and what better way to bond than pizza night! Getting to know your crew mates AND channelling your inner chef is always a win win.
The International Space Station orbits Earth 16 times a day, so get ready to rack up those frequent flyer miles! A favorite past time of many astronauts is Earth watching from the station’s cupola observatory. Get lost in the Pacific Ocean’s blue hue, gaze at the Himalayas or photograph your favorite cities all from a bird’s eye view. Get assigned to an Artemis Moon mission? Even better! Have fun expanding your travels to the solar system.
Perk about the job? Your childhood dreams to fly finally come true. Whether you’re floating around the International Space Station or getting adjusted to our new spaceship, Gateway, your inner superhero will be beaming.
Astronauts don’t just push the boundaries of human exploration, they also help pave the way for scientific breakthroughs back at home. Thanks to the microgravity environment of space, discoveries not possible on Earth are able to be unlocked. Investigations into Parkinson’s Disease, cancer and more have been conducted on the orbital lab.
Interested in applying to become an astronaut? You’re in luck, applications are open from March 2- 31! Learn about some common myths about becoming an astronaut HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s easy to get lost in fantasy worlds through science-fiction movies and novels, but did you know that some of your favorite fairy tale characters actually exist in cosmic form? From dwarfs and giants to shape-shifters and buried treasure, the universe is home to a multitude of mystical objects.
You’ve probably heard of dwarfs like Happy and Sneezy (or Gimli and Thorin), but it’s unlikely you’re familiar with the space-dwelling dwarfs with names like Sirius B and ASASSN-16oh. White dwarf stars like these are typically about the size of Earth, which is pretty small as far as stars go. They represent one of three final stages of stellar evolution, along with neutron stars and black holes. Each star’s mass determines which one it will ultimately become. Stars much more massive than the Sun typically become neutron stars or black holes, and lower-mass stars end up as white dwarfs.
Our Sun will eventually become a white dwarf after it exhausts its fuel, but don’t worry — we’ve got several billion years to go! Before it is reduced to a white dwarf it will actually expand into a red giant, swelling out to encompass Earth’s orbit. But we don’t have to wait billions of years to see stellar giants … some already peek out at us from the cosmic deep.
The red giant star Aldebaran, located about 65 light-years away, is about 5,000 times bigger than Earth. Our Cassini spacecraft imaged Aldebaran through Saturn’s rings in 2006, but you can see it for yourself during northern winter. Just look for the brightest star in the constellation Taurus.
Fairy tale giants may be taller than trees, but these supergiant stars can be over 100,000 times “taller” than our entire planet! Supergiant stars are likely becoming more rare as time goes on. While scientists believe they used to be more common, our whole galaxy now contains just a small smattering of supergiants.
These massive stars grace the galaxy for a relatively small amount of time. They burn through their fuel extremely quickly — in just a few million years, as opposed to hundreds of billions of years for the smallest stars! Supergiants often end their lives in dramatic explosions called supernovae.
Betelgeuse — the bright, reddish star marking the shoulder of Orion — is nearing the end of its life and has expanded to become a red supergiant star. It is destined to explode as a supernova, which might happen tonight … or within the next few hundred thousand years.
Even an average star like our Sun has some seemingly magical qualities. Each second, it sends billions of phantom-like neutrino particles out into space. They travel almost as fast as light and don’t usually interact with normal matter. Billions of them are zipping harmlessly straight through your body while you read this. Even at night they go through the entire Earth before reaching you!
But that’s not all … these ghostly particles are shape-shifters, too! Neutrinos can change characteristics over time, morphing between different versions of themselves. Spooky!
Extensive clouds of dust enshroud the heart of our Milky Way galaxy, hiding it from our view — at least when it comes to visible light. The dust isn’t as big a problem for infrared light, however, which has allowed us to get a glimpse of our galaxy’s chaotic core thanks to our Hubble and Spitzer space telescopes.
Future missions may peer into the galactic core in search of buried treasure — thousands of planets orbiting distant stars!
Want to learn about more cosmic objects? Find them here!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Science in the field gets even more delightful. Two different missions are in the field right now, studying snow and how it affects communities around the country.
From our Wallops Flight Facility in Virginia, the IMPACTS mission is flying up and down the East Coast, investigating how snow forms inside clouds. In Grand Mesa, Colorado, SnowEx’s teams on the ground and in the air are taking a close look at how much water is stored in snow.
Hate going out in the storm? The IMPACTS mission can help with that! IMPACTS uses two planes – a P-3 Orion and an ER-2 – flying through and high above the clouds to study where intense bands of snowfall form. Better understanding where intense snow will fall can improve forecast models down the road — helping prepare communities for snowstorms.
Cameras mounted on the wings of the P3 took microscopic images of snowflakes, like this one.
At the same time, the SnowEx team is in Colorado, studying the depth and density of snow. Researchers are making radar spirals with snowmobiles and working in giant snow pits to measure things like snow water equivalent, or how much water is stored in snow.
SnowEx is helping us better understand snow’s role in ecosystems and human systems, like irrigation for agriculture. If you want to bring some corn for popping, SnowEx’s science can help grow that crop.
Follow along with our teams as they brave the cold and snow: https://twitter.com/nasaexpeditions
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Tonight, count the stars and remember a trailblazer.
We're saddened by the passing of celebrated #HiddenFigures mathematician Katherine Johnson. She passed away at 101 years old.
An America hero, Johnson's legacy of excellence broke down racial and social barriers while helping get our space agency off the ground.
Once a "human computer", she famously calculated the flight trajectory for Alan Shepard, the first American in space.
And when we began to use electronic computers for calculations, astronaut John Glenn said that he’d trust the computers only after Johnson personally checked the math.
As a girl, Katherine Johnson counted everything. As a mathematician, her calculations proved critical to our early successes in space travel.
With slide rules and pencils, Katherine Johnson’s brilliant mind helped launch our nation into space. No longer a Hidden Figure, her bravery and commitment to excellence leaves an eternal legacy for us all.
"We will always have STEM with us. Some things will drop out of the public eye and will go away, but there will always be science, engineering and technology. And there will always, always be mathematics." - Katherine Johnson 1918 -2020
May she rest in peace, and may her powerful legacy inspire generations to come! What does Katherine Johnson’s legacy mean to you? Share in the comments.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Venus is an EXTREME world, and we’re calling on YOU to help us explore it! NASA Jet Propulsion Laboratory is running a public challenge to develop an obstacle avoidance sensor for a possible future Venus rover.
With a surface temperature in excess of 840 degrees Fahrenheit and a surface pressure 92 times that of Earth, Venus can turn lead into a puddle and crush a nuclear-powered submarine with ease. While many missions have visited our sister planet, only about a dozen have made contact with the surface of Venus before succumbing to the oppressive heat and pressure after just about more than an hour.
The “Exploring Hell: Avoiding Obstacles on a Clockwork Rover” challenge is seeking the public’s designs for a sensor that could be incorporated into the design concept. The winning sensor could be the primary mechanism by which the rover detects and navigates around obstructions.
Open Date: February 18, 2020 ––––––––– Close Date: May 29, 2020
Have you ever wondered if you have what it takes to become a NASA Astronaut? We’re accepting applications starting March 2, and we’re encouraging all eligible Americans to apply by March 31!
It’s an incredible time in human spaceflight to be an astronaut. With Artemis, our sights are set on the Moon – to stay – by utilizing sustainable lunar missions, and you could be one of the humans on the surface! During their careers, this next class of astronauts may also fly on any of four different U.S. spacecraft: the International Space Station, Boeing’s CST-100 Starliner, SpaceX’s Crew Dragon and our Orion deep-space exploration vehicle; They will be at the cutting edge of a new era in human exploration.
So, still interesting in joining our ranks as an Artemis generation astronaut? Here are a few things to note.
MYTH: All astronauts have piloting experience.
FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but could be beneficial to have.
MYTH: All astronauts have perfect vision.
FACT: It’s okay if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least 1 year has passed since the date of the procedure with no permanent adverse after effects.
MYTH: All astronauts have advanced degrees like, a PhD.
FACT: While a Master’s degree from an accredited university is necessary, the requirement can also be met with the completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.
MYTH: Astronauts are required to have military experience in order to be selected.
FACT: Military experience is not required to become an astronaut.
MYTH: You have to be a certain age in order to be an astronaut.
FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.
The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:
Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;
A completed doctor of medicine or doctor of osteopathic medicine degree;
Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.
Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
In Roman mythology, the god Jupiter drew a veil of clouds around himself to hide his mischief. It was only Jupiter's wife, the goddess Juno, who could peer through the clouds and reveal Jupiter's true nature. Our @NASAJuno spacecraft is looking beneath the clouds of the massive gas giant, not seeking signs of misbehavior, but helping us to understand the planet's structure and history... Now, @NASAJuno just published its first findings on the amount of water in the gas giant’s atmosphere. The Juno results estimate that at the equator, water makes up about 0.25% of the molecules in Jupiter's atmosphere — almost three times that of the Sun. An accurate total estimate of this water is critical to solving the mystery of how our solar system formed.
The JunoCam imager aboard Juno captured this image of Jupiter's southern equatorial region on Sept. 1, 2017. The bottom image is oriented so Jupiter's poles (not visible) run left-to-right of frame.
Image credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill
Before research can get on a rocket to head to space, it is carefully prepared at Kennedy Space Center.
Scientists sometimes spend days, or even weeks, doing all of the last-minute preparations to get their investigation ready for microgravity.
This week on NASA Explorers, we follow a team of researchers in the final days before their experiment gets loaded into a SpaceX Dragon capsule that will carry their research to the space station.
Watch episode 4 here!
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Save the date! One year from today, Feb. 18, 2021, our next rover is set to land on Mars. Get to know #Mars2020 now! Click here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
As Earth’s climate changes, some places are drying out and others are getting wetter, including the land that produces the food we eat. Farmers have to figure out how to adapt to changing climate conditions.
Our fleet of satellites has been watching over Earth for more than half a century. Some, like our joint Landsat mission with the U.S. Geological Survey (USGS), collect valuable data about the crops that make up our food supply and the water it takes to grow them.
Combining this wealth of satellite data with observations on the ground allows us to track how crop production changes over the years.
For example, this map shows how croplands have changed over the years to feed a growing population. The Agriculture Department (USDA) has used Landsat data since 2008 to track crops growing in the continental United States.
Agricultural scientists can even focus in on data for individual crops like corn, wheat and soybeans. They can look closely at regional crops, like citrus, that grow in only a few areas.
This nationwide view — provided by Landsat satellites orbiting 438 miles above Earth — is important to track the nation’s food supply. But with data from other satellites, like our ECOSTRESS instrument and ESA’s (the European Space Agency) Sentinel-2, agricultural scientists can monitor how healthy crops are in real time and predict when they’ll be ready to harvest.
In this false-color image of California farmland, red areas peak early in the season, whereas blue areas peak late. This information helps farmers watch over the plants in their fields, predict when they’ll be ready to harvest, and maximize crop production.
But while growing more and more crops sounds good, there can be challenges, like water. Especially when there’s not enough of it.
During California’s recent drought, just over 1 million acres of fertile farmland (shown in green) were fallow, or unused (red) in 2015. That’s nearly double the number of unused fields in 2011, the last year with normal rainfall before the drought.
Irrigating acres and acres of farmland takes lots of water. With remote sensing, scientists can track how irrigation fluctuates with climate change, new water management policies, or new technologies. Research like this helps farmers grow the most crops with the least amount of water.
As our climate changes, it’s more important than ever for farmers to have the knowledge they need to grow crops in a warming world. The data collected by our Earth-observing satellites help farmers learn about the planet that sustains us — and make better decisions about how to cultivate it.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern hemisphere of Jupiter during its 24th close pass of the giant planet on Dec. 26, 2019. Using data from the flyby, citizen scientist Kevin M. Gill created this color-enhanced image. At the time, the spacecraft was about 14,600 miles (23,500 kilometers) from the tops of Jupiter’s clouds, at a latitude of about 69 degrees north.
Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Kevin M. Gill, © CC BY
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’re accepting applications March 2-31 for the next class of #Artemis Generation astronauts who will embark on missions to the Moon and Mars. Join our class of star sailors and find out if you have what it takes to #BeAnAstronaut!
The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:
Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;
A completed doctor of medicine or doctor of osteopathic medicine degree;
Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.
Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.
More information here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Relationships can be complicated — especially if you’re a pair of stars. Sometimes you start a downward spiral you just can’t get out of, eventually crash together and set off an explosion that can be seen 130 million light-years away.
For Valentine’s Day, we’re exploring the bonds between some of the universe’s peculiar pairs … as well as a few of their cataclysmic endings.
When you look at a star in the night sky, you may really be viewing two or more stars dancing around each other. Scientists estimate three or four out of every five Sun-like stars in the Milky Way have at least one partner. Take our old north star Thuban, for example. It’s a binary, or two-star, system in the constellation Draco.
Alpha Centauri, our nearest stellar neighbor, is actually a stellar triangle. Two Sun-like stars, Rigil Kentaurus and Toliman, form a pair (called Alpha Centauri AB) that orbit each other about every 80 years. Proxima Centauri is a remote red dwarf star caught in their gravitational pull even though it sits way far away from them (like over 300 times the distance between the Sun and Neptune).
Credit: ESO/Digitized Sky Survey 2/Davide De Martin/Mahdi Zamani
Sometimes, though, a stellar couple ends its relationship in a way that’s really disastrous for one of them. A black widow binary, for example, contains a low-mass star, called a brown dwarf, and a rapidly spinning, superdense stellar corpse called a pulsar. The pulsar generates intense radiation and particle winds that blow away the material of the other star over millions to billions of years.
In romance novels, an air of mystery is essential for any love interest, and black holes are some of the most mysterious phenomena in the universe. They also have very dramatic relationships with other objects around them!
Scientists have observed two types of black holes. Supermassive black holes are hundreds of thousands to billions of times our Sun’s mass. One of these monsters, called Sagittarius A* (the “*” is pronounced “star”), sits at the center of our own Milky Way. In a sense, our galaxy and its black hole are childhood sweethearts — they’ve been together for over 13 billion years! All the Milky-Way-size galaxies we’ve seen so far, including our neighbor Andromeda (pictured below), have supermassive black holes at their center!
These black-hole-galaxy power couples sometimes collide with other, similar pairs — kind of like a disastrous double date! We’ve never seen one of these events happen before, but scientists are starting to model them to get an idea of what the resulting fireworks might look like.
One of the most dramatic and fleeting relationships a supermassive black hole can have is with a star that strays too close. The black hole’s gravitational pull on the unfortunate star causes it to bulge on one side and break apart into a stream of gas, which is called a tidal disruption event.
The other type of black hole you often hear about is stellar-mass black holes, which are five to tens of times the Sun’s mass. Scientists think these are formed when a massive star goes supernova. If there are two massive stars in a binary, they can leave behind a pair of black holes that are tied together by their gravity. These new black holes spiral closer and closer until they crash together and create a larger black hole. The National Science Foundation’s LIGO project has detected many of these collisions through ripples in space-time called gravitational waves.
Credit: LIGO/T. Pyle
Here’s hoping your Valentine’s Day is more like a peacefully spiraling stellar binary and less like a tidal disruption! Learn how to have a safe relationship of your own with black holes here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
“We saw to the edge of all there is—
So brutal and alive it seemed to comprehend us back.”
-Tracy K. Smith, US Poet Laureate
Some pictures are worth a thousand words and some a thousand thoughts. On Jan. 31, astronaut Christina Koch shared this emotional view and quote from the International Space Station. Enjoy.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Astronauts train all over the world, including at Johnson Space Center. Here, they learn not just how to live aboard the International Space Station, but also how to conduct science in microgravity.
Astronauts serve as the eyes and hands of researchers while their experiments are in space, so they must be trained in everything from using a microscope, to maintaining the equipment for combustion experiments.
Check out this week’s episode of NASA Explorers as we go to class with an astronaut.
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
At 11:03 p.m. EST on Sunday, Feb. 9, Solar Orbiter, an international collaboration between the European Space Agency and NASA, launched aboard United Launch Alliance’s #AtlasV rocket for its journey to our closest star. The spacecraft will help us understand how the Sun creates and controls the constantly changing space environment throughout the solar system. The more we understand about the Sun’s influence on the planets in our solar system and the space we travel through, the more we can protect our astronauts and spacecraft as we journey to the Moon, to Mars and beyond. More here.
Image Credit: NASA Social participant, Jared Frankle
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Putting your life’s work on top of a rocket may seem like a daunting task, but that’s exactly what scientists have been doing for decades as they launch their research to the International Space Station.
This season on #NASAExplorers, we’re exploring why we send science to space, and what it takes to get it there!
Watch this week’s episode to meet a team of researchers who are launching an experiment to space for the first time.
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Sure, floating looks like fun, but it could also unlock new scientific discoveries!
Microgravity makes the International Space Station the perfect place to perform research that is changing the lives of people on Earth, and preparing us to go deeper into space. This season on our series NASA Explorers, we are following science into low-Earth orbit and seeing what it takes to do research aboard the space station.
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday. https://www.facebook.com/NASAExplorersSeries/
We're on the verge of launching a new spacecraft to the Sun to take the first-ever images of the Sun's north and south poles!
Credit: ESA/ATG medialab
Solar Orbiter is a collaboration between the European Space Agency (ESA) and NASA. After it launches — as soon as Feb. 9 — it will use Earth's and Venus's gravity to swing itself out of the ecliptic plane — the swath of space, roughly aligned with the Sun’s equator, where all the planets orbit. From there, Solar Orbiter's bird’s eye view will give it the first-ever look at the Sun's poles.
Credit: ESA/ATG medialab
The Sun plays a central role in shaping space around us. Its massive magnetic field stretches far beyond Pluto, paving a superhighway for charged solar particles known as the solar wind. When bursts of solar wind hit Earth, they can spark space weather storms that interfere with our GPS and communications satellites — at their worst, they can even threaten astronauts.
To prepare for potential solar storms, scientists monitor the Sun’s magnetic field. But from our perspective near Earth and from other satellites roughly aligned with Earth's orbit, we can only see a sidelong view of the Sun's poles. It’s a bit like trying to study Mount Everest’s summit from the base of the mountain.
Solar Orbiter will study the Sun's magnetic field at the poles using a combination of in situ instruments — which study the environment right around the spacecraft — and cameras that look at the Sun, its atmosphere and outflowing material in different types of light. Scientists hope this new view will help us understand not only the Sun's day-to-day activity, but also its roughly 11-year activity cycles, thought to be tied to large-scales changes in the Sun's magnetic field.
Solar Orbiter will fly within the orbit of Mercury — closer to our star than any Sun-facing cameras have ever gone — so the spacecraft relies on cutting-edge technology to beat the heat.
Credit: ESA/ATG medialab
Solar Orbiter has a custom-designed titanium heat shield with a calcium phosphate coating that withstands temperatures more than 900 degrees Fahrenheit — 13 times the solar heating that spacecraft face in Earth orbit. Five of the cameras look at the Sun through peepholes in that heat shield; one observes the solar wind out the side.
Over the mission’s seven-year lifetime, Solar Orbiter will reach an inclination of 24 degrees above the Sun’s equator, increasing to 33 degrees with an additional three years of extended mission operations. At closest approach the spacecraft will pass within 26 million miles of the Sun.
Solar Orbiter will be our second major mission to the inner solar system in recent years, following on August 2018’s launch of Parker Solar Probe. Parker has completed four close solar passes and will fly within 4 million miles of the Sun at closest approach.
Solar Orbiter (green) and Parker Solar Probe (blue) will study the Sun in tandem.
The two spacecraft will work together: As Parker samples solar particles up close, Solar Orbiter will capture imagery from farther away, contextualizing the observations. The two spacecraft will also occasionally align to measure the same magnetic field lines or streams of solar wind at different times.
The booster of a United Launch Alliance Atlas V rocket that will launch the Solar Orbiter spacecraft is lifted into the vertical position at the Vertical Integration Facility near Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on Jan. 6, 2020. Credit: NASA/Ben Smegelsky
Solar Orbiter is scheduled to launch on Feb. 9, 2020, during a two-hour window that opens at 11:03 p.m. EST. The spacecraft will launch on a United Launch Alliance Atlas V 411 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
Launch coverage begins at 10:30 p.m. EST on Feb. 9 at nasa.gov/live. Stay up to date with mission at nasa.gov/solarorbiter!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com